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SIGNIFICANCE AND EXPLANATION

The central limit theorem is a fundamental theorem in probability and

statistics. It states that the probability distribution of the sum of a large

number of small and mutually independent random numerical observations

approaches a normal distribution as the number of observations increases. The

Lindeberg condition is a condition for which the central limit theorem holds.

It has been proved to be both necessary and sufficient.

A PoincarS-type inequality is an inequality which relates the integral of

the square of a function to the integral of the square of its derivative. In

this report we give a new proof of the central limit theorem by using

Poincare-type inequalities to prove both the necessity and sufficiency of the

Lindeberg condition.
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THE CENTRAL LIMIT THEOREM AND POINCARE-TYPE INEQUALITIES

Louis H. Y. Chen

Borovkov and Utev (1984) defined the functional

u(X) - sup Var[lg(X)]g(X sup q ' ()]2mw
2 2

g a Fq(~

for any random variable X with finite variance a 2 where the supremum is

taken over the class of absolutely continuous functions q such that 0 <

Var[g(X)] < . They proved that

(1) U(X) ) I and if U(X) - I then X has a normal distribution.

Usinq this result they further proved that

(2) if XlX 2 ,... is a sequence of random variables such that U(Xn) + I

then the moment generating function of (Xn - EX )/[Var(X )) 1/2 existsn n n

and converges to that of the standard normal random variable in a ...

neighborhood of zero.
~...,,.

It is natural to ask if (1) can also be applied to prove the central

limit theorem under the Lindeberg condition. This question was in fact raised PC

hy S. Kotani in private communication with the author and motivated the

present work.

The existence of the moment generating function of Xn  in (2) is due to

the finiteness of U(X5 ) (see Borovkov and Utev, Theorem 2). Since the

central limit theorem does not require such a strong condition, arguments

different from those of Borovkov and Utev would have to be used. It turns out

that a Poincar&-type inequality for sums of independent random variables

proved along the same line as in Chen (1985, Section 2) is the key to this

problem. Using this inequality we can prove not only the sufficiency of the

Research partially sponsored by the United States Army under Contract No.
DAAG29-80-C-0041. Part of this work was done when the author was visiting the
Institute for Mathematics and Its Applications at the University of Minnesota.
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Lindeberg condition but also its necessity.

In order to facilitate application, we restate (1) in a different form.

Let Cj(1) be the class of functions g such that g and g' are bounded

*: and continuous.

PROPOSITION 1. Let X be a random variable with finite variance

a2 > 0. If Varfg(X)] 4 a2E[g(X)]2  for g c CI(R), then X has a normal

distribution. _ _ I -

To see that (1) and Proposition I are equivalent, we define

Var[g(X)]

U0(x) supgEC0(R) 2g '()]2..

Var [g(X) ] >0

*and ,..

Us(X) = sup Var [g(X) ] ,-

sup 2
qca ap aE[q'(X)]

Var[q(x)]>0

*where CO(R) is the class of C functions on l with compact support.

*Then we observe that by definition, U(X) ) and that by Theorem 2(i) of
aorovkov and Utev, U0(X) = UB(X) = U(X)o

*Since we are interested in both an application of Poincar -type"""'.

*inequalities and a new proof of the central limit theorem, it is fitting to ":.

examine the arguments which lead to (1) and hence Proposition 1. There are

three different proofs of (1). All begin with a variational argument. After '.'-'

*that the first uses the method of moments (see Borovkov and Utev, Theorem 3)....

The second uses the characteristic function (see Chen and Lou (1985, Theorem

*2.1 and Corollary 2.1). The third uses differential equations (see Chen and "

*Lou, Lemmas 4.1 and 4.2). ..

B 2 2 "- "
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THE CENTRAL LIMIT THEOREM AND POINCARE-TYPE INEQUALITIES

Louis H. Y. Chen

Borovkov and Utev (1984) defined the functional

SU(X) - sup Var[g(X)]
U()-sp2 2

g a [g'(X)l]

for any random variable X with finite variance a2, where the supremum is

taken over the class of absolutely continuous functions q such that 0 <

Var[g(X)] < -. They proved that

(1) U(X) 0 1 and if U(X) - I then X has a normal distribution.

Using this result they further proved that

(2) if X1,X2 ,... is a sequence of random variables such that U(Xn) .

then the moment generating function of (X - EX )/[Var(X existsn n n eit

and converges to that of the standard normal random variable in a

neighborhood of zero.

It is natural to ask if (1) can also be applied to prove the central

limit theorem under the Lindeberg condition. This question was in fact raised

by S. Kotani in private communication with the author and motivated the

present work.

The existence of the moment generating function of X in (2) is due to

the finiteness of U(Xn ) (see Borovkov and Utev, Theorem 2). Since the

central limit theorem does not require such a strong condition, arguments

different from those of Borovkov and Utev would have to be used. It turns out

that a PoincarA-type inequality for sums of independent random variables

proved along the same line as in Chen (1985, Section 2) is the key to this

problem. Tsing this inequality we can prove not only the sufficiency of the
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SLindeberq condition but also its necessity.

In order to facilitate application, we restate (1) in a different form.

Let cj(R) be the class of functions g such that g and g' are bounded

and continuous.

PROPOSITION 1. Let X be a random variable with finite variance

02 > 0. If Vartg(X)] 4 a2E[g'(X)] 2  for g c Cl(R), then X has a normal n.
* distribution.

To see that (1) and Proposition I are equivalent, we define

0oX' 2 u V 2) '"-'

00 2- 2g 0 R a Etg'(X)j

Var [g(X)] >0

*and .r. .

sup 2 2I a E[g'(X)]"

vat(gx)] >0

-where CO)is the class of C functions on IR with compact support.

Then we observe that by definition, U(X) > I and that by Theorem 2(i) of

Borovkov and Utev, U0(X) UB(X) = U(X).

Since we are interested in both an application of Poincarl-type

inequalities and a new proof of the central limit theorem, it is fitting to

examine the arguments which lead to (1) and hence Proposition I. There are

three different proofs of (1). Al begin with a variational argument. After

that the first uses the method of moments (see Borovkov and Utev, Theorem 3).

The second uses the characteristic function (see Chen and Lou (1985, Theorem

2.1 and Corollary 2.1). The third uses differential equations (see Chen and

*| lou, Lemmas 4.1 and 4.2). .. _,
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We now prove the sufficiency of the Lindeberg condition. Let

Xn1 .. 1nr1Vn > 1, be a triangular array of row-wise independent random

variables with zero means and finite variances a1 12.. 2 such that
r r n

a X 2 =1. let Wn Xn and -x .By Theorem 2.1of Chenni Wn~ Wn Xni

(1985), -

rn W(i)

Varfg(W~) E[Var g (W)
i-n

for q c C1(IR) such that lg(x)I 4 C(I + Ixj) for some constant C. Now the

right hand side of the inequality equals

r [gi) M En (g(W )-gW )
FE"[~ ) - q(W E gW W

n= n n n

r
Mi 2

n n

rn

E[ rXni SCi) )dt1

i= 0 npr
n

= E iX ni I(Xni. M + t)] dt}

r
(1) 22i

I EFX ( + t > 0) ( <O]gdt+t)

where Ct ~( ni > n ((i < ) . Dfne h

rr

E~~g'(Wt) n (t] n(td

whre bouned and contin fntin > on 1( 2  Als defin .efine the

pbabixy ~. Tecmiigteaoeieulities meaer hav the( b

-3
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following Poincarh-type inequality for W. For g c CI0R) such that

jg(x)l I C(I + Ixl) for some constant C,

(3) Var[g(Wn)] C ( (g,) 2 dna1 A 1S

Let v(1)(A) - Vn(AxIR) and vn 2(A) - VnCRxA) for A cB(IR)• Since

( > KlM (t)dt

n

I 3' f O I Ct+n
ni nii

rn 1

rn

' X2 Ixi > ) ...
ii ni ni

the Lindeberg condition implies that vnthe Dirac measure at ,

as n + • Now EW (i)2 2 _ 1 for each n and i implies that {v1

is tight and hence relatively compact. Let {v( be a weakly convergent
subsequence and let I )Z

s q -)> L(Z). Then V, -> L( ) and hence

V nO*- 1 .> L(Z). It follows from (3) that for g c C1lIR),

(4) Var[g(Z)] 4 E(g'(Z)] 2

If we show that Z has a standard normal distribution, then

L(Wn) -> N(0,1) is proved. By Proposition 1 it remains to prove that

Var(Z) - 1. First we observe that by virtue of EW2 = 1, Z is square
n

integrable. Let 9a C Ci(IR) be increasing such that

x if lxi 4 a

Ta(x) = a+1 if x ) a+2

-a-1 if x 4 -a-2 .

By (3),

Var(W n, - a(W,)] C (-,p) 2 Vn,OL-1

Since VnO- converges weakly, (VnO*-1 is tight. Therefore for c > 0,

Var[Wn, - 2aWn,)] < I]R l- dvnIJ 1 -

-4-
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for sufficiently large a. Nov (Var)1/2 is a seminorm and so

I (Var(, a(W,)V2 no !Var(W n )12 - (Var(fpa (W n 'mV21

1C (Var (W - (W 11/2
no' a no

By letting n' and then a + ,we obtain

I- Var(Z 1/21 C1/2

This implies that Var(Z) 1 and hence L( Wn) N(0,1).

We now prove the necessity of the Lindeberg condition. First we need two

* simple propositions.

PROPOSITION 2. The Lindeberg condition holds if and only if Vn

PROOF. The "only if" part has been proved above. The "if" part follows

from the following inequalities: 3

r r
n n
~'EIx ldx I 3) EIX W~X I -C)I(IX I > Z)

ni ni ni ni ni

r
in 2

Rx2 WcX j > 29)
2 l ni

For the next proposition let Cu(IR) be the class of functions g on JR

such that g, go and g'' are uniformly continuous, Ig(x)I 'C C( + 1xi)

for some constant C and g' and go' are bounded.

PROPOSITION 3. Let Z and T be independent random variables such

that Z has the normal distribution with mean 0 and variance a2 > 0. if

Varg(Z] (c1L~qSZ+T1~ for g c CU), then T -0 v.p. 1.



PROOF. By the variational argument used in Borovkov and Utev (1984) or

ChenandLou(1985), vs have

EZh(Z) a- h(,T

for h c C2(IR). This equation also holds for h(x) =x
3  by approximatingU

-:this function by functions of C 2R). so

301 = EZ4 = 3a2E(Z+T)
2

222KThe finiteness of E(Z+T) and EZ2  implies that of ET. By expanding

E(Z+T)' we obtain a2=a2+ ET~ vhich implies that ET~ - and so T =0

For the proof of the necessity of the Lindeberg condition we need the

usual assumption that for every e > 0, max P(Ixni > c) + 0 as n +
14i~rn

Let g c C2(1R)- For every c > 0, let 5 > 0 be such that j(g Cx)) -

Cg'Cy)) 2 1 4 C for Ix-yI 4 6. Then we have
rn

1~ j'tm E{(gC(W(') + t)) 2 -(q'(W + t)) 2  CiK )dt
n= i n n

r nrn
* ~ ~~ CS( ~)t)dt + C K~i M td

i1 ni n , n

4 c( max 'PCX I > + +1

n

*for same constant C. Define the probability measure v on B(IR) by
n

rn

I f. f(t)K ty~

*for bounded and continuous functions f on 3R. In view of C5), the

inequality C3) can be written as

* (6) Var(gCW )) 4 E~g'CW +t (2VClt) + o(1)
n -~n n

Suppose L(Wn) -> NqC0,1). Let 0 n be a subsequence of (V n which

converges vaguely to a subprobability measuire v.Then for g c cCI(P), the

-6-



class of C2 functions on IR with compact support, it is not difficult to

I ~show that E ( ' t'ZT]2

J..c EL'( + ,t] v,(dt) + f g'ZT]V(dt)__

wher Z s astandard normal random variable. So by (6) we have%

(7) 2Var~(Z)J~ f~ E[g'(Z+T)] 2 V(dt)g

By approximating Cu2(]R) by functions of C(), (7)hod fr gc 2I)
U 0 U

By letting g(x) =x, we get

1 v f v(dt)

and so V is a probability measure. By Proposition 3, V must be CO.

(2)
Mence V > C * 'But V = V .By 'Proposition 2, the Lindeberg condition

n 0n n

holds. This completes the proof.
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